Сферы применения 3D печати в стоматологии и медицине
ФОТО: Печатая зубы на 3D принтере.
Опубликовано: Отраслевой информационный веб-ресурс orgprint.com.
3D печать всё прочнее входит в нашу жизнь, превращаясь из узконаправленной и дорогой услуги в незаменимого помощника для профессионалов различных сфер деятельности. Доступность 3D печати позволяет проводить смелые эксперименты в архитектуре, строительстве, мелкосерийном производстве, медицине, образовании, ювелирном деле, полиграфии, изготовлении рекламной и сувенирной продукции. В настоящей статье мы раскроем основные сферы применения 3D печати в наши дни.
Архитектура
3D печать находит широкое применение в изготовлении архитектурных макетов зданий, сооружений, целых микрорайонов, коттеджных посёлков со всей инфраструктурой: дорогами, деревьями, уличным освещением.
На рисунке 1 показаны макеты зданий, созданные с использованием трёхмерной печати.
Рис. 1. Применение 3D печати в архитектуре
Для печати трёхмерных архитектурных макетов используют дешёвый гипсовый композит, который обеспечивает низкую себестоимость готовых моделей.
На сегодняшний день для 3D печати доступно 390 тысяч оттенков палитры CMYK, что позволяет воплотить в жизнь любую цветовую фантазию архитектора.
Для трёхмерной печати архитектурных моделей и прототипов чаще всего используются цветные 3D ZPrinter модели 250, 450, 650, 850 и чёрно-белые 3D ZPrinter модели 150 и 350.
Строительство
Инженеры из университета Южной Калифорнии создали систему 3D печати для работы с крупногабаритными объектами. Система работает по принципу строительного крана, который возводит стены из слоёв бетона. Такой 3D принтер может возвести двухэтажный дом всего лишь за 20 часов. Рабочим останется только установить окна, двери и провести внутреннюю отделку помещения.
Рис. 2. 3D принтер строит дом
Голландские архитекторы предложили напечатать при помощи строительного 3D принтера уникальный дом в форме ленты Мёбиуса. «Печать» дома запланирована на 2014 год. Дом планируется напечатать из смеси песка и связующих материалов.
Рис. 3. Здание в форме ленты Мёбиуса, напечатанное 3D принтером
Вполне возможно, что через несколько десятков лет вырастут целые посёлки с великолепными комфортными домами, построенными по технологии 3D печати.
Мелкосерийное производство
Профессиональные 3D принтеры постепенно отвоёвывают свои позиции в сфере мелкосерийного производства. Чаще всего данную технологию печати используют для изготовления эксклюзивных изделий, например предметов искусства, фигурок персонажей для участников ролевых интернет-игр, прототипов и концептуальных моделей будущих потребительских товаров или их конструктивных деталей. Такие модели используются как в экспериментальных целях, так и для презентаций новых товаров.
Рис. 4. Мелкосерийные модели, напечатанные 3D принтером
Для мелкосерийной 3D печати чаще всего используют системы Dimension, модели Elite и SST 1200ES, а также системы Fortus, модели 400mc и 900 mc.
Функциональное тестирование
Использование 3D принтеров для функционального тестирования – это один из современных методов инновационных разработок. В большинстве случаев требуется протестировать новый механизм в сборе, но изготовить отдельные компоненты в одном экземпляре слишком долго, дорого и весьма проблематично. На помощь приходят 3D принтеры с различной степенью детализации моделей.
Рис. 5. Функциональное 3D тестирование
Для функционального 3D тестирования рекомендуется использовать принтеры Objet 24 и 30, устройства Eden 250, 260V, 350, 500V, а также Objet 260 Connex, Connex 350 и 500. Для изготовления функциональных 3D моделей из пластика разработаны машины Dimension uPrint, uPrint+, Elite, SST 1200ES, а также Fortus 400mc и 900mc.
Медицина
Использование 3D принтеров в медицине позволяет спасти человеческие жизни. Такие принтеры могут воссоздать точную копию человеческого скелета для отработки приёмов, гарантирующих проведение успешной операции. Всё чаще 3D принтеры используют в протезировании и стоматологии, так как трёхмерная печать позволяет получить протезы и коронки значительно быстрее классической технологии производства.
Рис. 6. Прототипы зубных коронок, напечатанные на 3D принтере
Медицинские трёхмерные модели могут быть изготовлены из целого ряда материалов, включая живые органические клетки. Выбор того или иного материала для медицинского прототипирования зависит от целей и задач, стоящих перед медиками, и проблем, связанных со здоровьем пациента.
Совсем недавно сила и мощь 3D печати была продемонстрирована на примере обыкновенного орла, который по вине браконьеров лишился клюва. 3D печать позволила изготовить точную копию орлиного клюва.
Рис. 7. Орлиный клюв, напечатанный 3D принтером
На рисунке 8 показана малышка Emma Lavalle (Эмма Лаваль), страдающая от редкого врождённого заболевания, при котором атрофируются мышцы рук, и ребёнок не может взять в руки даже лёгкую игрушку. Медики разработали и напечатали на 3D принтере специальный пластиковый экзоскелет, который помогает девочке жить полноценной жизнью.
Рис. 8. Экзоскелет, напечатанный на 3D принтере для девочки с отрафированными мышцами рук
По мере роста девочки, специалисты печатают новые запасные части для экзоскелета, так что он всегда ей в пору.
Не останавливаясь на достигнутом, медики научились печатать «заплатки» для повреждённой человеческой кожи. В качестве материалов для печати используется специальный гель из клеток донора. По словам учёных, для печати кожи может быть использован даже самый обычный офисный принтер, немного модернизированный под поставленную задачу.
Рис. 9. «Заплатка» для человеческой кожи, напечатанная 3D биопринтером
В 2011 году учёные сумели воспроизвести живую человеческую почку. Для этого 3D принтеру потребовалось всего лишь 3 часа.
Рис. 10. 3D принтер печатает живую почку
Для печати пластиковых медицинских прототипов, совместимых с биологическими организмами, используются 3D принтеры Eden 250, 260V, 350, 350V, 500; Fortus 400mc, 900mc; Objet 260 Connex, Connex 350 и 500.
Образование
Использование технологии 3D печати в образовании позволяет получить наглядные пособия, которые отлично подходят для классных комнат любых образовательных учреждений, начиная от детских садов и заканчивая вузами.
Современные 3D принтеры отлично подходят для классных комнат, поскольку имеют повышенную надёжность, не выделяют во время печати вредных для здоровья продуктов, не предъявляют особых требований к утилизации, не содержат режущих и бритвенных материалов, не имеют лазеров.
Рис. 11. Наглядные пособия, напечатанные 3D принтером для учреждений среднего профессионального образования
Предполагается, что оснащение образовательных учреждений конструкторских или дизайнерских специальностей 3D принтерами поспособствует повышению эффективности образовательного процесса и быстрому усвоению знаний учащимися и студентами.
Производство одежды
Принтеры с технологией 3D печати постепенно осваивают сферу производства одежды, и в первую очередь – производство моделей для высокой моды.
Не так давно голландский модельер Айрис Ван Херпен представила коллекцию «Напряжение», все модели которой были созданы при помощи 3D печати. Коллекция была представлена на Неделе высокой моды в Париже.
Рис. 12. Комплекты одежды, напечатанные с использованием 3D принтера
Технология 3D печати позволяет использовать для изготовления одного предмета одежды несколько различных материалов. Такой подход позволяет решить проблемы, связанные с прочностью и эластичностью изготавливаемых вещей.
Рис. 13. Комплекты одежды, напечатанные 3D принтером
Одежду, напечатанную 3D принтером, пока можно увидеть только на показах мод. Но не остаётся сомнений, что внедрение подобных изделий в массовое производство является лишь вопросом времени. Возможно, в ближайшем будущем мы сможем не выходя из дома напечатать себе новую рубашку, вечернее платье или даже шубу необходимого цвета и размера.
Изготовление обуви
Первая пара обуви, напечатанная на 3D принтере, появилась в 2011 году благодаря стараниям шведских студентов. Сегодня трёхмерная обувь, напечатанная на принтерах, красуется на ведущих подиумах всего мира. Существенным преимуществом такой обуви является точный учёт индивидуальных особенностей её владельца, включая размер и форму стопы.
Рис. 14. Женская обувь, напечатанная на 3D принтере
Внешний вид 3D обуви существенно отличается от традиционной, поэтому она будет пользоваться спросом среди креативных молодых людей, которые хотят подчеркнуть свою индивидуальность.
3D принтеры научились печатать не только женскую, но и мужскую обувь. Студент Лондонского колледжа моды Росс Бербер в своей дебютной коллекции представил пять пар обуви, напечатанных на принтере.
Условные обозначения:
белая обувь – заготовки, чёрная обувь – готовые модели
Рис. 15. Мужская обувь, напечатанная на 3D принтере
Для изготовления 3D обуви используют полиуретан, резину и пластик. Стоимость такой обуви пока слишком высока, чтобы наладить её массовое производство.
Ювелирные изделия
Как известно, при изготовлении ювелирных изделий самой трудоёмкой процедурой является создание восковых прототипов, которое требует колоссальных затрат времени. С появлением 3D принтеров у ювелиров появилась возможность быстро выращивать восковые модели украшений, предварительно разработанные в специальной программе.
Рис. 16. Прототипы ювелирных украшений, напечатанные 3D принтером
Для создания прототипов ювелирных украшений с использованием 3D принтера используется специальный материал, по своему составу похожий на ювелирный воск.
Для печати прототипов ювелирных украшений можно использовать следующие 3D принтеры: Soldscape T76, Eden 260V и 500V, Objet260 Connex и др.
Дизайн упаковки
Трёхмерные принтеры позволяют изготавливать пробные макеты упаковки, флаконов и бутылок оригинальной формы. Прототипы могут быть цветными, с включением всех элементов дизайна, в т.ч. этикеток, штрих-кодов, фирменных знаков. Готовые модели упаковки могут быть продемонстрированы заказчику перед запуском в массовое производство. Преимущество 3D прототипов налицо: заказчик может подержать упаковку в руках, оценить её фактуру, текстуру, цветовое оформление и некоторые другие характеристики.
Рис. 17. Прототипы бутылок, напечатанные 3D принтером
Для изготовления пластиковых упаковок в настоящее время используют следующие 3D принтеры: Dimension uPrint, uPrint+, Elite, SST 1200ES; Fortus 400mc и 900mc. Для изготовления полупрозрачной и детализированной упаковки используются принтеры: Objet 24 и 30; Eden 250, 260V, 350, 500V; Objet 260 Connex, Connex 350 и 500. Для печати цветной упаковки лучше всего подойдут принтеры ZPrinter 250, 450, 650 и 850.
Печать игрушек и сувениров
Использование 3D принтеров для создания уникальных игрушек и сувениров уже ни у кого не вызывает удивления. Теперь легко получить готовый полноцветный прототип перед запуском изделия в массовое производство. Анализ прототипа позволяет изучить текстуру будущего изделия, его форму, размер и цвет.
Чаще всего сувенирные изделия печатают из гипсовых материалов, дополнительно обработанных для увеличения прочности готового изделия. 3D принтеры печатают сувениры с различной цветностью, вплоть до полноцветной текстуры в 390000 оттенков.
Рис. 18. Игрушки и сувениры, напечатанные 3D принтерами
Для изготовления цветных игрушек и сувениров больше всего подходят принтеры ZPrinter 250, 450, 650 и 850.
Геоинформационные системы
Применяя 3D принтеры можно создавать объёмные цветные карты, точно отображающие ландшафт местности или указывающие уровни залегания различных пород.
Рис. 19. Ландшафтная 3D карта
Возможно, в ближайшем будущем 3D принтер станет таким же неотъемлемым атрибутом нашего быта, как холодильник, микроволновая печь или телевизор, и мы будем с удивлением вспоминать те времена, когда люди не умели печатать одежду, посуду, обувь и прочие полезные предметы в домашних условиях, а покупали всё это в магазине.
См. также
http://3dpokupka.jimdo.com/3dпринтеры-для-стоматологии/
3D принтер за 44.900 рублей. Купить FOROOFFICE. Introducing the UP Mini 3D printer.